Area Problems
A rectangular park 60 m long and 40 m wide has two concrete crossroads running in the middle of the park and rest of the park has been used as a lawn. If the area of the lawn is 2109 sq. m, then what is the width of the road?
Area of the park = (60 x 40) m2 = 2400 m2. Area of the lawn = 2109 m2. ∴ Area of the crossroads = (2400 - 2109) m2 = 291 m2. Let the width of the road be x metres. Then, 60x + 40x - x2 = 291 ⟹ x2 - 100x + 291 = 0 ⟹ (x - 97)(x - 3) = 0 ⟹ x = 3
Area of park = 100 x 100 = 10000 m2Area of circular lawn = Area of park - area of park excluding circular lawn= 10000 - 8614 = 1386Now again area of circular lawn = (22/7) x r2 = 1386 m2? r2 = (1386 x 7) / 22= 63 x 7= 3 x 3 x 7 x 7? r = 21 m
Let the diagonal of one square be (2d) cmThen, diagonal of another square = d cm? Area of first square = [ 1/2 x (2d)2] cm2Area of second square = (1/2 x d2) cm2? Ratio of area = (2d)2/ d2= 4/1 = 4: 1
Let area 100 m2Then, side = 10 m New side = 125 % of 10= (125/100) x 10= 12.5 m New area = 12.5 x 12.5 m2=(12.5)2 sq. m? Increase in area = (12.5)2 - (10)2 m2= 22.5 x 2.5 m2=56.25 m2% Increase = 56.25 %