Let original length = x metres and original breadth = y metres. Original area = (xy) m2. New length = ❨ 120 x ❩m = ❨ 6 x ❩m. 100 5 New breadth = ❨ 120 y ❩m = ❨ 6 y ❩m. 100 5 New Area = ❨ 6 x x 6 y ❩m2 = ❨ 36 xy ❩m2. 5 5 25 The difference between the original area = xy and new-area 36/25 xy is = (36/25)xy - xy = xy(36/25 - 1) = xy(11/25) or (11/25)xy ∴ Increase % = ❨ 11 xy x 1 x 100 ❩% = 44%
let the side of the square be x meterslength of two sides = 2x metersdiagonal = 2 x = 1.414x m saving on 2x meters = .59x m saving % = 0 . 59 x 2 x * 100 % = 30% (approx)
Let base = b and altitude = h Then, Area = b x h But New base = 110b / 100 = 11b / 10Let New altitude = HThen, Decrese = (h - 10h /11 )= h / 11? Required decrease per cent = (h/11) x (1 / h ) x 100 %= 91/11 %
Perimeter = Distance covered in 8 min. = ❨ 12000 x 8 ❩m = 1600 m. 60 Let length = 3x metres and breadth = 2x metres. Then, 2(3x + 2x) = 1600 or x = 160. ∴ Length = 480 m and Breadth = 320 m. ∴ Area = (480 x 320) m2 = 153600 m2
clearly the cow will graze a circular field of area 9856 sq m and radius equal to the length of the rope.
Let the length of the rope be r mts then,
= 9856
= (9856 × 7) / 22 = 3136
r = 56 m