Let original length = x metres and original breadth = y metres. Original area = (xy) m2. New length = ❨ 120 x ❩m = ❨ 6 x ❩m. 100 5 New breadth = ❨ 120 y ❩m = ❨ 6 y ❩m. 100 5 New Area = ❨ 6 x x 6 y ❩m2 = ❨ 36 xy ❩m2. 5 5 25 The difference between the original area = xy and new-area 36/25 xy is = (36/25)xy - xy = xy(36/25 - 1) = xy(11/25) or (11/25)xy ∴ Increase % = ❨ 11 xy x 1 x 100 ❩% = 44%
Let original length = x and original breadth = y. Decrease in area = xy - ❨ 80 x x 90 y ❩ 100 100 = ❨ xy - 18 xy ❩ 25 = 7 xy. 25 ∴ Decrease % = ❨ 7 xy x 1 x 100 ❩% = 28%
Cross section area = 1/2 x ( a + b ) x d where a and b are the parallel sides, d is the perpendicular distance between them.? 1/2 x ( a + b ) x d = 640? d = (640 x 2) / 16 = 80m
Let original length = x and original breadth = y. Original area = xy. New length = x . 2 New breadth = 3y. New area = ❨ x x 3y ❩ = 3 xy. 2 2 ∴ Increase % = ❨ 1 xy x 1 x 100 ❩% = 50%