Let original length = x metres and original breadth = y metres. Original area = (xy) m2. New length = ❨ 120 x ❩m = ❨ 6 x ❩m. 100 5 New breadth = ❨ 120 y ❩m = ❨ 6 y ❩m. 100 5 New Area = ❨ 6 x x 6 y ❩m2 = ❨ 36 xy ❩m2. 5 5 25 The difference between the original area = xy and new-area 36/25 xy is = (36/25)xy - xy = xy(36/25 - 1) = xy(11/25) or (11/25)xy ∴ Increase % = ❨ 11 xy x 1 x 100 ❩% = 44%
Original area = (22/7) x 9 x 9 cm2New area = (22/7) x 7 x 7 cm2? Decrease = 22/7 x [(9)2 -(7)2] cm2=(22/7) x 16 x 2 cm2Decrease percent = [(22/7 x 16 x 2) /( 7/22 x 9 x 9)] x 100 %= 39.5 %
Let the radius of circular field = r m.Speed of person in m/s = 30/60 = 1/2m/sAccording to the question,[(2?r) /(1/2)] - [(2r)/(1/2)] = 30? 4?r - 4r = 30? [4 x (22/7) - 4]r =30? (125 - 4)r = 30 ? (8.5)r = 30? r = 30/8.5 = 3.5 m