RCC Structures Design In a beam the local bond stress Sb, is equal to Leaver arm/(Bending moment × Total perimeter of reinforcement) Total perimeter of reinforcement/(Leaver arm × Shear force) Leaver arm/(Shear force × Total perimeter of reinforcement) Shear force/(Leaver arm × Total perimeter of reinforcement) Leaver arm/(Bending moment × Total perimeter of reinforcement) Total perimeter of reinforcement/(Leaver arm × Shear force) Leaver arm/(Shear force × Total perimeter of reinforcement) Shear force/(Leaver arm × Total perimeter of reinforcement) ANSWER DOWNLOAD EXAMIANS APP
RCC Structures Design If permissible working stresses in steel and concrete are respectively 1400 kg/cm² and 80 kg/cm² and modular ratio is 18, in a beam reinforced in tension side and of width 30 cm and having effective depth 46 cm, the lever arms of the section, is 39 cm 40 cm 37 cm 38 cm 39 cm 40 cm 37 cm 38 cm ANSWER DOWNLOAD EXAMIANS APP
RCC Structures Design An R.C.C. beam of 6 m span is 30 cm wide and has a lever arm of 55 cm. If it carries a U.D.L. of 12 t per m and allowable shear stress is 5 kg/cm², the beam Is safe with stirrups and inclined bars Is safe in shear Needs revision of section Is safe with stirrups Is safe with stirrups and inclined bars Is safe in shear Needs revision of section Is safe with stirrups ANSWER DOWNLOAD EXAMIANS APP
RCC Structures Design The maximum shear stress (q) in concrete of a reinforced cement concrete beam is Shear force/(Lever arm × Width) Lever arm/(Shear force × Width) (Shear force × Width)/Lever arm Width/(Lever arm × Shear force) Shear force/(Lever arm × Width) Lever arm/(Shear force × Width) (Shear force × Width)/Lever arm Width/(Lever arm × Shear force) ANSWER DOWNLOAD EXAMIANS APP
RCC Structures Design If p1 is the vertical intensity of pressure at a depth h on a block of earth weighing w per unit volume and the angle of repose φ, the lateral intensity of pressure p2 is w (1 - cos φ)/h (1 + sin φ) wh (1 - cos φ)/(1 + sin φ) wh (1 - tan φ)/(1 + tan φ) wh (1 - sin φ)/(1 + sin φ) w (1 - cos φ)/h (1 + sin φ) wh (1 - cos φ)/(1 + sin φ) wh (1 - tan φ)/(1 + tan φ) wh (1 - sin φ)/(1 + sin φ) ANSWER DOWNLOAD EXAMIANS APP
RCC Structures Design If the permissible compressive stress for a concrete in bending is C kg/m², the modular ratio is 2300/2C 2800/3C 2800/C 2800/C² 2300/2C 2800/3C 2800/C 2800/C² ANSWER DOWNLOAD EXAMIANS APP