RCC Structures Design The maximum diameter of a bar used in a ribbed slab, is 12 mm 22 mm 6 mm 20 mm 12 mm 22 mm 6 mm 20 mm ANSWER DOWNLOAD EXAMIANS APP
RCC Structures Design If A is the area of the foundation of a retaining wall carrying a load W and retaining earth of weight 'w' per unit volume, the minimum depth (h) of the foundation from the free surface of the earth, is h = √(W/Aw) [(1 - sin φ)/(1 + sin φ)]² h = (W/Aw) [(1 - sin φ)/(1 + sin φ)]² h = (W/Aw) [(1 - sin φ)/(1 + sin φ)] h = (W/Aw) [(1 + sin φ)/(1 + sin φ)] h = √(W/Aw) [(1 - sin φ)/(1 + sin φ)]² h = (W/Aw) [(1 - sin φ)/(1 + sin φ)]² h = (W/Aw) [(1 - sin φ)/(1 + sin φ)] h = (W/Aw) [(1 + sin φ)/(1 + sin φ)] ANSWER DOWNLOAD EXAMIANS APP
RCC Structures Design An R.C.C. beam not provided with shear reinforcement may develop cracks in its bottom inclined roughly to the horizontal at 45° 35° 25° 55° 45° 35° 25° 55° ANSWER DOWNLOAD EXAMIANS APP
RCC Structures Design ‘P’ is the pre-stressed force applied to the tendon of a rectangular pre-stressed beam whose area of cross section is ‘A’ and sectional modulus is ‘Z’. The maximum stress ‘f’ in the beam, subjected to a maximum bending moment ‘M’, is f = (P/A) + (M/Z) f = (P/A) + (M/6Z) f = (A/P) + (M/Z) f = (P/'+ (Z/M) f = (P/A) + (M/Z) f = (P/A) + (M/6Z) f = (A/P) + (M/Z) f = (P/'+ (Z/M) ANSWER DOWNLOAD EXAMIANS APP
RCC Structures Design For a number of columns constructed in a rcjw, the type of foundation provided, is Strip Strap Raft Footing Strip Strap Raft Footing ANSWER DOWNLOAD EXAMIANS APP
RCC Structures Design If K is a constant depending upon the ratio of the width of the slab to its effective span l, x is the distance of the concentrated load from the nearer support, bw is the width of the area of contact of the concentrated load measured parallel to the supported edge, the effective width of the slab be is All listed here K/x (1 + x/d) + bw Kx (1 + x/l) + bw Kx (1 - x/l) + bw All listed here K/x (1 + x/d) + bw Kx (1 + x/l) + bw Kx (1 - x/l) + bw ANSWER DOWNLOAD EXAMIANS APP