Given that, area = 40 sq cm, base = 28 cm and height = perpendicular = ?Area = (base x perpendicular) / 2 ? 40 = (28 x perpendicular) / 2 ? perpendicular = 40/14 = 20/7 = 26/7 cm
Area of the plot = (3 x 1200) m2= 3600 m2Let breadth = y metersThen Length = 4y meters,Now area = 4y x y = 3600 m2? y2 = 900 m2? y = 30 m? Length of plot = 4y m= (4 x 30) m=120 m
Let length of rectangle = 5kand breadth of rectangle = 3kAccording to the quecation,5k - 3k = 8 ? 2k =8? k = 4? Lenght = 5k = 5 x 4 = 20 mBreadth = 3k = 3 x 4 = 12 m? Required area = Lenght x Breadth = 20 x 12 = 240 sq m
Original area = (22/7) x 9 x 9 cm2New area = (22/7) x 7 x 7 cm2? Decrease = 22/7 x [(9)2 -(7)2] cm2=(22/7) x 16 x 2 cm2Decrease percent = [(22/7 x 16 x 2) /( 7/22 x 9 x 9)] x 100 %= 39.5 %