The circuit shown in the question is an AND GATE. In an AND gate has two or more inputs but it has only one output. An input signal applied to a gate has only two stable states, either 1 (HIGH) or 0 (LOW). In AND gate for any input A&B the output is A.B.
The average value of the sine wave over one complete cycle is actually zero. Hence, for a sine wave, the average value is defined over half the period. The average value expressed in terms of peak value is given by Average value = 0.637 × peak value
In the given diagram all are NOR Gate . The final output is shown in the figure. At stage 1 the output will be \overline A \& \overline B At stage 2 the output will be \overline {\overline A + \overline B } = A.B And the final output will be \overline {A.B} Hence for input A & B the output is \overline {AB} in case of Nand gate.
Isolator or disconnecting Switch: An isolator is a switch that is designed to open a circuit under no-load condition. Its main purpose is to isolate one portion of the circuit from the other and is not allowed to be opened while current is flowing in the line. Such switches are used on both sides of a circuit breaker so that its repair works or replacement could be done. Note that an isolator is never opened until the circuit breaker in the circuit is opened and it is closed before the circuit breaker is closed. If an isolator is switched OFF when a high current is flowing through the circuit, a heavy spark will be produced. This heavy spark may break the supporting insulator of the isolator which may cause a fatal accident to the operator.
Hysteresis Loss = Kh × BM1.67 × f × v watts where Kh = Hysteresis constant depends upon the material Bm = Maximum flux density f = frequency v = Volume of the core Hence the hysteresis loss does not depend upon the ambient temperature.