Hysteresis Loss = Kh × BM1.67 × f × v watts where Kh = Hysteresis constant depends upon the material Bm = Maximum flux density f = frequency v = Volume of the core Hence the hysteresis loss does not depend upon the ambient temperature.
The inductance of the coil is given by the relation L = Nφ/I Where N = number of turns = 50 φ = flux = 200μWb I = current = 8 A L = 50 × 200 × 10−6 ⁄ 8 L = 1.25 mH
Magnetic Field Strength (H) gives the quantitative measure of strongness or weakness of the magnetic field.
H = B/μo
Where
B = Magnetic Flux Density
μo = Vacuum Permeability
Magnetic Field strength at the center of circular loop carrying current I is given by
B = μoI/2r
B/μo = I/2r
H = I/2r
Where r = Radius
Now Given Parameters
Diameter = 1m
Current = 2A
∴ Magnetic field Intensity H = (2 / 2 × 1/2) = 2 A/m
In the capacitor start, single-phase induction motor the capacitor is connected in series with the starting auxiliary winding. In this manner, the current in the starting winding may be made to lead the line voltage. Since the running winding current lags the line voltage, the phase displacement between the two currents is made to approximately 90° on starting. Placing the capacitor in the auxiliary winding circuit to produce a greater phase difference between the current in the main and the auxiliary windings. Due to greater phase difference capacitor Start motors have very high starting torque for a single-phase AC motor.
Galvanized steel conductors do not corrode, and possess high resistance. Hence such Wires are used in telecommunications circuits, earth wires, guard wire, stray wire, etc.