Galvanized steel conductors do not corrode, and possess high resistance. Hence such Wires are used in telecommunications circuits, earth wires, guard wire, stray wire, etc.
The circuit shown in the question is an AND GATE. In an AND gate has two or more inputs but it has only one output. An input signal applied to a gate has only two stable states, either 1 (HIGH) or 0 (LOW). In AND gate for any input A&B the output is A.B.
A nuclear power plant is a steam turbine plant where steam is generated by a nuclear reactor. Nuclear energy is the energy that is trapped inside each atom. Nuclear energy is obtained by fission of uranium-plutonium or thorium or the fusion of hydrogen into helium. In normal conditions, the energy released due to the disintegration of a uranium atom is significantly low. The capturing of neutrons by the uranium-235 is rather easy and to fission it for the release of the energy. In a chain reaction, particles released by the splitting of the atom strike other uranium atoms and split them. The particles released by this further split other atoms in a chain process. The chain reaction gives off heat energy. This heat energy is used to boil heavy water at the core of the reactor.
Faraday’s 1st laws of electromagnetic induction tell us about the condition under which an e.m.f. is induced in a conductor or coil a when the magnetic flux linking a conductor or coil changes. Faraday’s 2nd laws of electromagnetic induction give the magnitude of the induced e.m.f in a conductor or coil and may be stated as: The magnitude of the e.mf induced in a conductor or coil is directly proportional to the rate of change of magnetic flux linkages. Suppose a coil has N turns and magnetic flux linking the coil increases (i.e. changes) from φ1 Wb to φ2 Wb in t seconds. Now, magnetic flux linkages mean the product of magnetic flux and the number of turns of the coil. N = e dφ/dt Lenz Law:- Lenz’s law states: the direction of the induced e.m.f. is such as to oppose the change producing it. Therefore, the magnitude and direction of induced e.m.f. should be written as : N = −e dφ/dt
Given Inductance L = 2 H Rate of change of current di/dt = 5 A/sec Self induced EMF = − (Rate of change of current × Inductance) = −L(di/dt) = −(5 × 2) = −10V