Area Problems
One diagonal of a rhombus is 60% of the other diagonal. Then, area of the rhombus is how many times the square of the length of the larger diagonal?
Let one diagonal be k.Then, other diagonal = (60k/100) = 3k/5 cmArea of rhombus =(1/2) x k x (3k/5) = (3/10) = 3/10 (square of longer diagonal)Hence, area of rhombus is 3/10 times.
Let the sides of trapezium be 5k and 3k, respectively According to the question, (1/2) x [(5k + 3k) x 12] = 384? 8k = (384 x 2)/12 = 64 ? k = 64/8 = 8 cmLength of smaller of the parallel sides = 8 x 3 = 24 cm
We have: (l - b) = 23 and 2(l + b) = 206 or (l + b) = 103. Solving the two equations, we get: l = 63 and b = 40. ∴ Area = (l x b) = (63 x 40) m2 = 2520 m2
Let breadth = b meters. then, length = 3b/2 meters ? b x 3b/2 = 2/3 X 10000? b2 = (4 x 10000)/9? b = ( 2 X 100)/3 m ? Length = (3/2) x (2/3) x 100 m= 100 m