Alligation or Mixture problems
In a 48 ltr mixture, the ratio of milk and water is 5:3. How much water should be added in the mixture so as the ratio will become 3:5?
Given mixture = 48 lit Milk in it = 48 x 5/8 = 30 lit => Water in it = 48 - 30 = 18 lit Let 'L' lit of water is added to make the ratio as 3:5 => 30/(18+L) = 3/5 => 150 = 54 + 3L => L = 32 lit.
As per figure we can calculate the ration as below.Number of supervisors / Number of labourers = (10 / 100) = 1/10 Total number of labourers = Total no. of supervisors × 10 = 15 × 10 = 150.
Suppose the can initially contains 7x and 5x of mixtures A and B respectively. Quantity of A in mixture left = ❨ 7x - 7 x 9 ❩ litres = ❨ 7x - 21 ❩ litres. 12 4 Quantity of B in mixture left = ❨ 5x - 5 x 9 ❩ litres = ❨ 5x - 15 ❩ litres. 12 4 ∴ ❨ 7x - 21 ❩ 4 = 7 ❨ 5x - 15 ❩ + 9 4 9 ⟹ 28x - 21 = 7 20x + 21 9 ⟹ 252x - 189 = 140x + 147 ⟹ 112x = 336 ⟹ x = 3. So, the can contained 21 litres of A.
% of milk in first bottle = 64% % of milk in second bottle = 100 - 26 = 74% Now, ATQ 64% 74% 68% 6 4 Hence, by using allegation method, Required ratio = 3 : 2