RCC Structures Design For stairs spanning l meters longitudinally between supports at the bottom and top of a flight carrying a load w per unit horizontal area, the maximum bending moment per metre width, is ANSWER DOWNLOAD EXAMIANS APP
RCC Structures Design To ensure that the hogging bending moment at two points of suspension of a pile of length L equals the sagging moment at its centre, the distances of the points of suspension from either end, is 0.407 L 0.307 L 0.207 L 0.107 L 0.407 L 0.307 L 0.207 L 0.107 L ANSWER DOWNLOAD EXAMIANS APP
RCC Structures Design Based on punching shear consideration, the overall depth of a combined footing under a column A, is (Perimeter of column A × Safe punching stress)/(Load on column A × Upward pressure × Area of the column) (Perimeter of column A × Safe punching stress)/(Load on column A + Upward pressure × Area of the column) (Area of the column A × Safe punching stress)/Load on column A None of these (Perimeter of column A × Safe punching stress)/(Load on column A × Upward pressure × Area of the column) (Perimeter of column A × Safe punching stress)/(Load on column A + Upward pressure × Area of the column) (Area of the column A × Safe punching stress)/Load on column A None of these ANSWER DOWNLOAD EXAMIANS APP
RCC Structures Design To have pressure wholly compressive under the base of a retaining wall of width b, the resultant of the weight of the wall and the pressure exerted by the retained, earth should have eccentricity not more than b/4 b/5 b/3 b/6 b/4 b/5 b/3 b/6 ANSWER DOWNLOAD EXAMIANS APP
RCC Structures Design If K is a constant depending upon the ratio of the width of the slab to its effective span l, x is the distance of the concentrated load from the nearer support, bw is the width of the area of contact of the concentrated load measured parallel to the supported edge, the effective width of the slab be is Kx (1 - x/l) + bw Kx (1 + x/l) + bw All listed here K/x (1 + x/d) + bw Kx (1 - x/l) + bw Kx (1 + x/l) + bw All listed here K/x (1 + x/d) + bw ANSWER DOWNLOAD EXAMIANS APP
RCC Structures Design The modular ratio ‘m’ of a concrete whose permissible compressive stress is ‘C’, may be obtained from the equation. m = 1400/3C m = 2800/3C m = 700/3C m = 3500/3C m = 1400/3C m = 2800/3C m = 700/3C m = 3500/3C ANSWER DOWNLOAD EXAMIANS APP