The inductance of the coil is given by the relation L = Nφ/I Where N = number of turns = 50 φ = flux = 200μWb I = current = 8 A L = 50 × 200 × 10−6 ⁄ 8 L = 1.25 mH
Constantin‘, also known as ‘Eureka wire‘, is the trade-name for a copper-nickel alloy (approx. 60:40 ratio) formulated in the late 1800s by Edward Weston.
The circuit shown in the question is an AND GATE. In an AND gate has two or more inputs but it has only one output. An input signal applied to a gate has only two stable states, either 1 (HIGH) or 0 (LOW). In AND gate for any input A&B the output is A.B.
Galvanized steel conductors do not corrode, and possess high resistance. Hence such Wires are used in telecommunications circuits, earth wires, guard wire, stray wire, etc.
In the given diagram all are NOR Gate . The final output is shown in the figure. At stage 1 the output will be \overline A \& \overline B At stage 2 the output will be \overline {\overline A + \overline B } = A.B And the final output will be \overline {A.B} Hence for input A & B the output is \overline {AB} in case of Nand gate.