Area Problems
A circular road runs rounds a circular ground. If the difference between the circumference of the outer circle and the inner circle is 66 meters, the width of the road is?
Let length of the longer diagonal = d cmThen, length of other diagonal = 0.8 x d cm Area of rhombus = (1/2) x d x 0.8 x d = 2/5 d2= 2/5 d2Area of square of the length of the longer diagonal = d2So the area of the rhombus is 2/5 times the square of the length of the longer diagonal.
Let area 100 m2Then, side = 10 m New side = 125 % of 10= (125/100) x 10= 12.5 m New area = 12.5 x 12.5 m2=(12.5)2 sq. m? Increase in area = (12.5)2 - (10)2 m2= 22.5 x 2.5 m2=56.25 m2% Increase = 56.25 %
Let the side of the square be 's' cm length of rectangle = (s+5) cm breadth of rectangle = (s-3)cm (s+5) (s-3) = s 2 - 5s - 3s - 15 = s 2 2s = 15 Perimeter of rectangle = 2(L+B) = 2(s+5 + s?3) = 2(2s + 2) = 2(15 + 2) = 34 cm
Circular piece is 4 x 11 = 44 cm long, Then Circumference of circle is given by, 44 = pi x D, where D is the diameter D = 44 / pi Take pi = 22 / 7, then D = 44 / (22/7) = (44 x 7) / 22 D = 14 cm.