MGVCL Exam Paper (30-07-2021 Shift 2) A 3-phase motor load has a p.f. of 0.397 lagging. The two wattmeter method used to measure power show the input as 30 kW. Find the reading on each wattmeter. W1 = 10 kW and W2 = 20 kW W1 = -10 kW and W2 = 40 kW W1 = -5 kW and W2 = 35 kW W1 = 5 kW and W2 = 25 kW W1 = 10 kW and W2 = 20 kW W1 = -10 kW and W2 = 40 kW W1 = -5 kW and W2 = 35 kW W1 = 5 kW and W2 = 25 kW ANSWER EXPLANATION DOWNLOAD EXAMIANS APP Here,Cosφ = 0.397P = 30 kW = √3*V_L*I_L*cosφV_L*I_L = 30kW/(√3*0.397) = 43628.48 VAReadings of wattmeter W1 = V_L*I_L*cos(30+φ)Readings of wattmeter W2 = V_L*I_L*cos(30-φ)
MGVCL Exam Paper (30-07-2021 Shift 2) The line currents in amperes in phases a, b and c respectively are 500 +j150, 100 – j600 and – 300 + j600 referred to the same reference vector with phase sequence of abc. Find the symmetrical component of currents. Ia₀ = (100+j50) AIa₁ = (546.41+ j165.47) AIa₂ = (546.41-j165.47) A Ia₀ = (100+j50) AIa₁ = (546.41+j165.47) AIa₂ = (-146.41-j65.47) A Ia₀ = (100+j50) AIa₁ = (200+ j107.75) AIa₂ = (200-j107.75) A Ia₀ = (100+j50) AIa₁ = (146.41+ j65.47) AIa₂ = (546.41-j165.47) A Ia₀ = (100+j50) AIa₁ = (546.41+ j165.47) AIa₂ = (546.41-j165.47) A Ia₀ = (100+j50) AIa₁ = (546.41+j165.47) AIa₂ = (-146.41-j65.47) A Ia₀ = (100+j50) AIa₁ = (200+ j107.75) AIa₂ = (200-j107.75) A Ia₀ = (100+j50) AIa₁ = (146.41+ j65.47) AIa₂ = (546.41-j165.47) A ANSWER EXPLANATION DOWNLOAD EXAMIANS APP Calculation:Ia1 = 1/3*(Ia + a*Ib + a²*Ic)= 500 + j150 + (- 0.5 + j*0.866)*(100 – j6000) + (-0.5 - j*0.866)*(– 300 + j600)= (546.41 + j*156.47) AIa2 = 1/3*(Ia + a²*Ib + a*Ic)= 500 + j150 + (- 0.5 - j*0.866)*(100 – j6000) + (-0.5 + j*0.866)*(– 300 + j600)= (-146.41 - j*56.47) AIao = 1/3*(Ia + Ib + Ic)= 1/3*(500 + j150 + 100 – j6000 – 300 + j600)= (100 + j*50) A
MGVCL Exam Paper (30-07-2021 Shift 2) If the velocity of electromagnetic wave in free space is 3 × 10⁸ m/s, then the velocity in a medium with εr of 4.5 and μr of 2 would be 27 × 10⁸ m/s 1 × 10⁸ m/s 9 × 10⁸ m/s 3 × 10⁸ m/s 27 × 10⁸ m/s 1 × 10⁸ m/s 9 × 10⁸ m/s 3 × 10⁸ m/s ANSWER EXPLANATION DOWNLOAD EXAMIANS APP Speed of EM wave in medium = C/√(εr*μr)= (300000000)/√9= 300000000/3= 100000000= 1*10⁸ m/s
MGVCL Exam Paper (30-07-2021 Shift 2) A single phase motor connected to 415 V, 50 Hz supply takes 30 A at a power factor of 0.7 lagging. Calculate the capacitance required in parallel with the motor to raise the power factor to 0.9 lagging. 66.32 µF 96.32 µF 86.32 µF 76.32 µF 66.32 µF 96.32 µF 86.32 µF 76.32 µF ANSWER EXPLANATION DOWNLOAD EXAMIANS APP P = VIcosφ = 8715 wattQ = VAR required to improve PF = P(tanφ₁ - tanφ₂) = 4670 VARCapacitive Reactance, Xc = V²/Q = 36.8790 ohm.C = (2πfXc)⁻¹ = 86.314 μF
MGVCL Exam Paper (30-07-2021 Shift 2) હુ ગીત ગાઈશ' ને કર્મણીમાં ફેરવો. ગીતને હુ ગાઈશ હુ ગીતને ગાઈશ ગીતને હુ જ ગાઇશ મારાથી ગીત ગવાશે ગીતને હુ ગાઈશ હુ ગીતને ગાઈશ ગીતને હુ જ ગાઇશ મારાથી ગીત ગવાશે ANSWER DOWNLOAD EXAMIANS APP
MGVCL Exam Paper (30-07-2021 Shift 2) In the circuit of figure, the switch is closed to position-1 for a long time. At t = 0 the switch position is changed from postion-1 to postion-2. Find an expression for the current i(t). i(t) = (E/R) cos√(LC) t A i(t) = (E/R) sin√(LC) t A i(t) = (E/R) cos[1/√(LC)]t A i(t) = (E/R) sin[1/√(LC)]t A i(t) = (E/R) cos√(LC) t A i(t) = (E/R) sin√(LC) t A i(t) = (E/R) cos[1/√(LC)]t A i(t) = (E/R) sin[1/√(LC)]t A ANSWER EXPLANATION DOWNLOAD EXAMIANS APP Standard eqution of current for this condition,i(t) = i(0+)*cos(wt)i(0+) = E/RFor LC circuit,w = 1/√(LC)i(t) = (E/R)*cos((1/√(LC))*t) A