Theory of Structures The shape factor of standard rolled beam section varies from 1.40 to 1.50 1.10 to 1.20 1.20 to 1.30 1.30 to 1.40 1.40 to 1.50 1.10 to 1.20 1.20 to 1.30 1.30 to 1.40 ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures For determining the support reactions at A and B of a three hinged arch, points B and Care joined and produced to intersect the load line at D and a line parallel to the load line through A at D’. Distances AD, DD’ and AD’ when measured were 4 cm, 3 cm and 5 cm respectively. The angle between the reactions at A and B is 60° 90° 30° 45° 60° 90° 30° 45° ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A close coil helical spring of mean diameter D consists of n coils of diameter d. If it carries an axial load W, the energy stored in the spring, is 4WD²n/d4N 4W²D3n/d4N 4W²Dn/d4N 4W²D3n²/d4N 4WD²n/d4N 4W²D3n/d4N 4W²Dn/d4N 4W²D3n²/d4N ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures For the close coil helical spring of the maximum deflection is 8WD3n/d4N WD3n/d4N 4W²D3n/d4N 2WD3n/d4N 8WD3n/d4N WD3n/d4N 4W²D3n/d4N 2WD3n/d4N ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures The eccentricity (e) of a hollow circular column, external diameter 25 cm, internal diameter 15 cm for an eccentric load 100 t for non-development of tension, is 3.00 cm 2.75 cm 4.25 cm 3.50 cm 3.00 cm 2.75 cm 4.25 cm 3.50 cm ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures The load on a spring per unit deflection, is called Proof resilience Proof stress Stiffness Proof load Proof resilience Proof stress Stiffness Proof load ANSWER DOWNLOAD EXAMIANS APP