Theory of Structures For the close coil helical spring of the maximum deflection is 2WD3n/d4N 8WD3n/d4N WD3n/d4N 4W²D3n/d4N 2WD3n/d4N 8WD3n/d4N WD3n/d4N 4W²D3n/d4N ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A square column carries a load P at the centroid of one of the quarters of the square. If a is the side of the main square, the combined bending stress will be 3p/a² p/a² 2p/a² 4p/a² 3p/a² p/a² 2p/a² 4p/a² ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures At any point of a beam, the section modulus may be obtained by dividing the moment of inertia of the section by Depth of the section Maximum tensile stress at the section Depth of the neutral axis Maximum compressive stress at the section Depth of the section Maximum tensile stress at the section Depth of the neutral axis Maximum compressive stress at the section ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures At yield point of a test piece, the material Obeys Hooke’s law Regains its original shape on removal of the load Behaves in an elastic manner Undergoes plastic deformation Obeys Hooke’s law Regains its original shape on removal of the load Behaves in an elastic manner Undergoes plastic deformation ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A steel plate d × b is sandwiched rigidly between two timber joists each D × B/2 in section. The steel will be (where Young’s modulus of steel is m times that of the timber). BD³ + mbd³)/6D] BD² + mbd²)/4D] BD² + mbd²)/6D] BD² + mbd³)/4D] BD³ + mbd³)/6D] BD² + mbd²)/4D] BD² + mbd²)/6D] BD² + mbd³)/4D] ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A masonry dam (density = 20,000 N/m³) 6 m high, one metre wide at the top and 4 m wide at the base, has vertical water face. The minimum stress at the base of the dam when the reservoir is full, will be 75 N/m² 7500 N/m² 75000 N/m² 750 N/m² 75 N/m² 7500 N/m² 75000 N/m² 750 N/m² ANSWER DOWNLOAD EXAMIANS APP