Let l = 4k and b = 9kArea of rectangle = l x b144 = 4k x 9k ? k2 = 144/36 ? k2 = 4? k = 2? l = 8 cm and b = 18 cmPerimeter of rectangle = 2(l + b)= 2(8 + 18)= 2 x 26= 52 cm
Let the sides of trapezium be 5k and 3k, respectively According to the question, (1/2) x [(5k + 3k) x 12] = 384? 8k = (384 x 2)/12 = 64 ? k = 64/8 = 8 cmLength of smaller of the parallel sides = 8 x 3 = 24 cm
Let original length = x metres and original breadth = y metres. Original area = (xy) m2. New length = ❨ 120 x ❩m = ❨ 6 x ❩m. 100 5 New breadth = ❨ 120 y ❩m = ❨ 6 y ❩m. 100 5 New Area = ❨ 6 x x 6 y ❩m2 = ❨ 36 xy ❩m2. 5 5 25 The difference between the original area = xy and new-area 36/25 xy is = (36/25)xy - xy = xy(36/25 - 1) = xy(11/25) or (11/25)xy ∴ Increase % = ❨ 11 xy x 1 x 100 ❩% = 44%