Let the diagonal of one square be (2d) cmThen, diagonal of another square = d cm? Area of first square = [ 1/2 x (2d)2] cm2Area of second square = (1/2 x d2) cm2? Ratio of area = (2d)2/ d2= 4/1 = 4: 1
Let each side of the square be a. Then, area = . a 2 New side = 125 a 100 = 5 a 4 . New area = 5 a 4 2 = 25 a 2 16 Increase in area = 25 a 2 16 - a 2 = 9 a 2 16 Increase% = 9 a 2 16 * 1 a 2 * 100 % = 56.25%.
According to the question,l/[2(l + b)] = 5/18? 10l + 10b = 18l = 10b? l/b = 10/8 = 5/4? l : b = 5 : 4Hence, ratio of length and breadth of a rectangle is 5 : 4
Let the side of the square = y cmThen, breadth of the rectangle = 3y/2 cm ? Area of rectangle = (40 x 3y/2) cm2= 60y cm2? 60y = 3y2? y = 20Hence, the side of the square = 20 cm
Let the sides of trapezium be 5k and 3k, respectively According to the question, (1/2) x [(5k + 3k) x 12] = 384? 8k = (384 x 2)/12 = 64 ? k = 64/8 = 8 cmLength of smaller of the parallel sides = 8 x 3 = 24 cm