Original area = ?(d/2)2= (?d2) / 4New area = ?(2d/2)2= ?d2Increase in area = (?d2 - ?d2/4)= 3?d2/4? Required increase percent = [(3?d2)/4 x 4/(?d2) x 100]%= 300%
Let original length = x metres and original breadth = y metres. Original area = (xy) m2. New length = ❨ 120 x ❩m = ❨ 6 x ❩m. 100 5 New breadth = ❨ 120 y ❩m = ❨ 6 y ❩m. 100 5 New Area = ❨ 6 x x 6 y ❩m2 = ❨ 36 xy ❩m2. 5 5 25 The difference between the original area = xy and new-area 36/25 xy is = (36/25)xy - xy = xy(36/25 - 1) = xy(11/25) or (11/25)xy ∴ Increase % = ❨ 11 xy x 1 x 100 ❩% = 44%
Let each side of the square be a. Then, area = . a 2 New side = 125 a 100 = 5 a 4 . New area = 5 a 4 2 = 25 a 2 16 Increase in area = 25 a 2 16 - a 2 = 9 a 2 16 Increase% = 9 a 2 16 * 1 a 2 * 100 % = 56.25%.