Area Problems
The length of a class room floor exceeds its breadth by 25 m. The area of the floor remains unchanged when the length is decreased by 10 m but the breadth is increased by 8 m. The area of the floor is
Let the breadth of floor be 'b' m. Then, length of the floor is 'l = (b + 25)' Area of the rectangular floor = l x b = (b + 25) × b According to the question, (b + 15) (b + 8) = (b + 25) × b b 2 + 8 b + 15 b + 120 = b 2 + 25 b 2b = 120 b = 60 m. l = b + 25 = 60 + 25 = 85 m. Area of the floor = 85 × 60 = 5100 sq.m.
Circular piece is 4 x 11 = 44 cm long, Then Circumference of circle is given by, 44 = pi x D, where D is the diameter D = 44 / pi Take pi = 22 / 7, then D = 44 / (22/7) = (44 x 7) / 22 D = 14 cm.
Diagonal of square = ?2a [a = side]4?2 = ?2 a a = 4 cmNow, area of square = a2 = (42) = 16Side of a square whose area is 2 x 16.a12 = 32 ? a1 = ?32 ?a14?2Now, diagonal of new square = ?2a = ?2x 4 ?2 = 8 cm