Area Problems
The length and breadth of a square are increased by 40% and 30% respectively. The area of a resulting rectangle exceeds the area of the square by?
Let the side of the square = 100 m So area of square = 100 x 100 = 10000.New length = 140 m, New breadth = 130 mIncrease in area = [(140 x 130) - (100 x 100)] m2= 8200 m2? Required increase percent = (8200/ 10000) x 100 % = 82%
Area of square plate = (Side)2 = (2d)2= 4d2Area of circular plate = ? (d/2)2= ?d2/4? Number of square plates = [(4d2)/4] / [(?d2)/4]= (4 x 4)/? ? 5Since, nearest integer value is 5.
Let the side of the square = y cmThen, breadth of the rectangle = 3y/2 cm ? Area of rectangle = (40 x 3y/2) cm2= 60y cm2? 60y = 3y2? y = 20Hence, the side of the square = 20 cm
Original circumference = 2?r New circumference = (150 /100) x 2 ?r = 3?r 2?R = 3?r? R = 3r/2 Original area = ?r2New area = ?R2= ?9r2 / 4 = 9?r2/4Increase in area = (9?r2/4 ) - (?r2)= (5/4) ?r2Req. increase per cent = [{(5/4) ?r2} / {?r2}] x 100 = 125 %