Theory of Structures The greatest load which a spring can carry without getting permanently distorted, is called Proof stress Proof resilience Proof load Stiffness Proof stress Proof resilience Proof load Stiffness ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A two hinged parabolic arch of span l and rise h carries a load varying from zero at the left end to ? per unit run at the right end. The horizontal thrust is ωl²/16h ωl²/4h ωl²/12h ωl²/8h ωl²/16h ωl²/4h ωl²/12h ωl²/8h ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures Y are the bending moment, moment of inertia, radius of curvature, modulus of If M, I, R, E, F, and elasticity stress and the depth of the neutral axis at section, then M/I = E/R = F/Y I/M = R/E = F/Y M/I = E/R = Y/F M/I = R/E = F/Y M/I = E/R = F/Y I/M = R/E = F/Y M/I = E/R = Y/F M/I = R/E = F/Y ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A steel bar 5 m × 50 mm is loaded with 250,000 N. If the modulus of elasticity of the material is 0.2 MN/mm² and Poisson’s ratio is 0.25, the change in the volume of the bar is: 1.125 cm³ 3.125 cm³ 4.125 cm² 2.125 cm³ 1.125 cm³ 3.125 cm³ 4.125 cm² 2.125 cm³ ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A simply supported rolled steel joist 8 m long carries a uniformly distributed load over it span so that the maximum bending stress is 75 N/mm². If the slope at the ends is 0.005 radian and the value of E = 0.2 × 106 N/mm², the depth of the joist, is 300 mm 400 mm 200 mm 250 mm 300 mm 400 mm 200 mm 250 mm ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A material is said to be perfectly elastic if It regains its original shape on removal of the load It does not regain its original shape at all None of these It regains its original shape partially on removal of the load It regains its original shape on removal of the load It does not regain its original shape at all None of these It regains its original shape partially on removal of the load ANSWER DOWNLOAD EXAMIANS APP