Theory of Structures The greatest load which a spring can carry without getting permanently distorted, is called Stiffness Proof load Proof stress Proof resilience Stiffness Proof load Proof stress Proof resilience ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A compound bar consists of two bars of equal length. Steel bar cross -section is 3500 mm²and that of brass bar is 3000 mm². These are subjected to a compressive load 100,000 N. If Eb = 0.2 MN/mm² and Eb = 0.1 MN/mm², the stresses developed are: b = 8 N/mm² s = 16 N/mm² b = 6 N/mm² s = 12 N/mm² b = 10 N/mm² s = 20 N/mm 2 b = 5 N/mm² s = 10 N/mm² b = 8 N/mm² s = 16 N/mm² b = 6 N/mm² s = 12 N/mm² b = 10 N/mm² s = 20 N/mm 2 b = 5 N/mm² s = 10 N/mm² ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures constant, depth of a cantilever of length of uniform strength loaded with Keeping breadth uniformly distributed load varies from zero at the free end and l) at the fixed end w l) at the fixed end 2w w l at the fixed end 3w l at the fixed end l) at the fixed end w l) at the fixed end 2w w l at the fixed end 3w l at the fixed end ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures The stiffness of the close coil helical spring is d4N/4D3n d4N/8D3n 4D3N/d4n 8D3N/d4n d4N/4D3n d4N/8D3n 4D3N/d4n 8D3N/d4n ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures For determining the support reactions at A and B of a three hinged arch, points B and Care joined and produced to intersect the load line at D and a line parallel to the load line through A at D’. Distances AD, DD’ and AD’ when measured were 4 cm, 3 cm and 5 cm respectively. The angle between the reactions at A and B is 30° 90° 45° 60° 30° 90° 45° 60° ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures H V are the algebraic sums of the forces resolved horizontally and vertically respectively, M is the algebraic sum of the moments of forces about any point, for the equilibrium of the body acted upon M = 0 H = 0 V = 0 All of these M = 0 H = 0 V = 0 All of these ANSWER DOWNLOAD EXAMIANS APP