Let original radius be r.Then, according to the questions,? (r + 1)2 - ?r2 = 22? ? x [(r + 1)2 - r2] = 22? (22/7) x (r + 1 + r ) x (r + 1 - r) = 22? 2r + 1 = 7 ? 2r = 6 ? r = 6/2 = 3 cm
We have: (l - b) = 23 and 2(l + b) = 206 or (l + b) = 103. Solving the two equations, we get: l = 63 and b = 40. ∴ Area = (l x b) = (63 x 40) m2 = 2520 m2
Let the side of the square = y cmThen, breadth of the rectangle = 3y/2 cm ? Area of rectangle = (40 x 3y/2) cm2= 60y cm2? 60y = 3y2? y = 20Hence, the side of the square = 20 cm
Let the side of the square = 100 m So area of square = 100 x 100 = 10000.New length = 140 m, New breadth = 130 mIncrease in area = [(140 x 130) - (100 x 100)] m2= 8200 m2? Required increase percent = (8200/ 10000) x 100 % = 82%