Area Problems In a triangle ABC, BC = 5 cm AC = 12 cm and AB = 13 cm. The length of a altitude drawn from B on AC is? 4 cm 7 cm 5 cm 6 cm 4 cm 7 cm 5 cm 6 cm ANSWER EXPLANATION DOWNLOAD EXAMIANS APP ? s= (13 + 5 + 12) / 2 cm = 15cms-a = 2 cm, s-b = 10 cm and s-c = 3 cm ? Area = ? (15 x 2 x 10 x 3 ) cm2= 30 cm2? (12 x h) / 2 = 30 ? h = 5 cm
Area Problems The ratio between the perimeter and the breadth of a rectangle is 5 : 1. If the area of the rectangle is 216 sq. cm, what is the length of the rectangle? 18 cm 24 cm Data inadequate None of these 18 cm 24 cm Data inadequate None of these ANSWER EXPLANATION DOWNLOAD EXAMIANS APP 2(l + b) = 5 b 1 ⟹ 2l + 2b = 5b ⟹ 3b = 2l b = 2 l 3 Then, Area = 216 cm2 ⟹ l x b = 216 ⟹l x 2 l = 216 3 ⟹ l2 = 324 ⟹ l = 18 cm
Area Problems How many circular plates of diameter d be taken out of a square plate of side 2d with minimum loss of material? 8 2 5 6 8 2 5 6 ANSWER EXPLANATION DOWNLOAD EXAMIANS APP Area of square plate = (Side)2 = (2d)2= 4d2Area of circular plate = ? (d/2)2= ?d2/4? Number of square plates = [(4d2)/4] / [(?d2)/4]= (4 x 4)/? ? 5Since, nearest integer value is 5.
Area Problems The length and breadth of a playground are 36 m and 21 m respectively. Flagstaffs are required to be fixed on all along the boundary at a distance of 3 m apart. The number of flagstaffs will be? 40 37 39 38 40 37 39 38 ANSWER EXPLANATION DOWNLOAD EXAMIANS APP Perimeter = 2 x (36 + 21 ) m = 144 m ? Number of flagstaffs = 144 / 3 = 38
Area Problems A rectangular lawn 55m by 35m has two roads each 4m wide running in the middle of it. One parallel to the length and the other parallel to breadth. The cost of graveling the roads at 75 paise per sq meter is rs.58 rs.358 rs.258 rs.158 rs.58 rs.358 rs.258 rs.158 ANSWER EXPLANATION DOWNLOAD EXAMIANS APP area of cross roads = (55 x 4) + (35 x 4)- (4 x 4) = 344sq m cost of graveling = 344 x (75/100) = Rs. 258
Area Problems The diagonals of two squares are in the ratio of 3 : 2. Find the ratio of their areas. 9 : 2 9 : 4 9 : 7 9 : 5 9 : 2 9 : 4 9 : 7 9 : 5 ANSWER EXPLANATION DOWNLOAD EXAMIANS APP Let the diagonals of the squares be 3x and 2x.? Ratio of their areas = [(1/2) (3x2)] / [(1/2) (2x2)] = 9/4