Alligation or Mixture problems
An alloy of copper and bronze weight 50g. It contains 80% Copper. How much copper should be added to the alloy so that percentage of copper is increased to 90%?
Initial quantity of copper = 80 100 x 50 = 40 g And that of Bronze = 50 - 40 = 10 g Let 'p' gm of copper is added to the mixture => 50 + p x 90 100 = 40 + p => 45 + 0.9p = 40 + p => p = 50 g Hence, 50 gms of copper is added to the mixture, so that the copper is increased to 90%.
Suppose the can initially contains 7x and 5x of mixtures A and B respectively. Quantity of A in mixture left = ❨ 7x - 7 x 9 ❩ litres = ❨ 7x - 21 ❩ litres. 12 4 Quantity of B in mixture left = ❨ 5x - 5 x 9 ❩ litres = ❨ 5x - 15 ❩ litres. 12 4 ∴ ❨ 7x - 21 ❩ 4 = 7 ❨ 5x - 15 ❩ + 9 4 9 ⟹ 28x - 21 = 7 20x + 21 9 ⟹ 252x - 189 = 140x + 147 ⟹ 112x = 336 ⟹ x = 3. So, the can contained 21 litres of A.
Cost price of the mixture = 15 × (100 / 180) = Rs. 25/3 per kg
(Quantity of rice @ Rs. 8 per kg) / (Quantity of rice @ Rs.10 per kg) = (5 / 3) / (1/3) = 1/5
Quantity of rice @ Rs. 10 per kg = 25 × (1/ 5) = 5 kgs.
Ratio of milk and water = 2 : 1Quantity of milk = 60 X 2/3 = 40 litreQuantity of water = 20 litreTo make ratio, 1: 2, we have to double the water that of milkSo, water should be 80 litre.That means 80 ? 20 = 60 litre water to be added.
If the two alloys are mixed, the mixture would contain 15 gms of each metal and it would cost Rs. (150 + 120) = Rs. 270.
Cost of (15 gms of metal A + 15 gms of metal B) = Rs. 270
Cost of (1 gm of metal A + 1 gm of metal B) = Rs. (270 / 15) = Rs. 18
Cost of 1 gm of metal B = Rs. (18 ? 6) = Rs. 12
Average cost of original piece of alloy = (150 / 15) = Rs. 10 per gm.
Quantity of metal / A Quantity of metal B = (2 / 4) = (1 / 2)
Quantity of metal B = 2 (1 + 2) × 15 = 10 gms.