Engineering Mechanics A pendulum which executes one beat per second is known as Simple pendulum Torsional pendulum Compound pendulum Second's pendulum Simple pendulum Torsional pendulum Compound pendulum Second's pendulum ANSWER DOWNLOAD EXAMIANS APP
Engineering Mechanics Three forces acting on a rigid body are represented in magnitude, direction and line of action by the three sides of a triangle taken in order. The forces are equivalent to a couple whose moment is equal to Twice the area of the triangle Area of the triangle Half the area of the triangle None of these Twice the area of the triangle Area of the triangle Half the area of the triangle None of these ANSWER DOWNLOAD EXAMIANS APP
Engineering Mechanics Which of the following is an equation of linear motion?(where, u and v = Initial and final velocity of the body, a = Acceleration of the body, and s = Displacement of the body in time t seconds.) s = u.t + ½ a.t2 v = u + a.t All of these v2 = u2 + 2a.s s = u.t + ½ a.t2 v = u + a.t All of these v2 = u2 + 2a.s ANSWER DOWNLOAD EXAMIANS APP
Engineering Mechanics If a given force (or a given system of forces) acting on a body __________ the position of the body, but keeps it in equilibrium, then its effect is to produce internal stress in the body. Change Changes periodically Does not change None of these Change Changes periodically Does not change None of these ANSWER DOWNLOAD EXAMIANS APP
Engineering Mechanics The loss of kinetic energy during inelastic impact, is given by (where m1 = Mass of the first body,m2 = Mass of the second body, and u1 and u2 = Velocities of the first and second bodies respectively.) [m₁ m₂/2(m₁ + m₂)] (u₁ - u₂)² [m₁ m₂/2(m₁ + m₂)] (u₁² - u₂²) [2(m₁ + m₂)/m₁ m₂] (u₁² - u₂²) [2(m₁ + m₂)/m₁ m₂] (u₁ - u₂)² [m₁ m₂/2(m₁ + m₂)] (u₁ - u₂)² [m₁ m₂/2(m₁ + m₂)] (u₁² - u₂²) [2(m₁ + m₂)/m₁ m₂] (u₁² - u₂²) [2(m₁ + m₂)/m₁ m₂] (u₁ - u₂)² ANSWER DOWNLOAD EXAMIANS APP
Engineering Mechanics According to parallel axis theorem, the moment of inertia of a section about an axis parallel to the axis through center of gravity (i.e. IP) is given by(where, A = Area of the section, IG = Moment of inertia of the section about an axis passing through its C.G., and h = Distance between C.G. and the parallel axis.) IP = IG - Ah2 IP = IG + Ah2 IP = Ah2 / IG IP = IG / Ah2 IP = IG - Ah2 IP = IG + Ah2 IP = Ah2 / IG IP = IG / Ah2 ANSWER DOWNLOAD EXAMIANS APP