Let length = L and breadth = BLet , New breadth = ZThen, New length = ( 160 / 100) L.= 8L / 5? 8L / 5 x Z = LBor Z = 5B/8Decrease in breadth = (B-5B/8)= 3B/8? Decrease in percent = (3B/8 x1/B ) x 100 %= 371/2%
Let original length = x metres and original breadth = y metres. Original area = (xy) m2. New length = ❨ 120 x ❩m = ❨ 6 x ❩m. 100 5 New breadth = ❨ 120 y ❩m = ❨ 6 y ❩m. 100 5 New Area = ❨ 6 x x 6 y ❩m2 = ❨ 36 xy ❩m2. 5 5 25 The difference between the original area = xy and new-area 36/25 xy is = (36/25)xy - xy = xy(36/25 - 1) = xy(11/25) or (11/25)xy ∴ Increase % = ❨ 11 xy x 1 x 100 ❩% = 44%
Area to the rectangular field = 12375/15 = 825 sq mAccording to the question, (L x B) = 825 [L = length and B = breadth]? L x 25 = 825 ? L = 825/25 = 33 m