RCC Structures Design The maximum ratio of span to depth of a cantilever slab, is 12 10 16 8 12 10 16 8 ANSWER DOWNLOAD EXAMIANS APP
RCC Structures Design If ‘A’ is the sectional area of a pre-stressed rectangular beam provided with a tendon pre-stressed by a force ‘P’ through its centroidal longitudinal axis, the compressive stress in concrete, is A/P P/A 2A/P P/2A A/P P/A 2A/P P/2A ANSWER DOWNLOAD EXAMIANS APP
RCC Structures Design If K is a constant depending upon the ratio of the width of the slab to its effective span l, x is the distance of the concentrated load from the nearer support, bw is the width of the area of contact of the concentrated load measured parallel to the supported edge, the effective width of the slab be is Kx (1 - x/l) + bw K/x (1 + x/d) + bw Kx (1 + x/l) + bw All listed here Kx (1 - x/l) + bw K/x (1 + x/d) + bw Kx (1 + x/l) + bw All listed here ANSWER DOWNLOAD EXAMIANS APP
RCC Structures Design To have pressure wholly compressive under the base of a retaining wall of width b, the resultant of the weight of the wall and the pressure exerted by the retained, earth should have eccentricity not more than b/4 b/6 b/3 b/5 b/4 b/6 b/3 b/5 ANSWER DOWNLOAD EXAMIANS APP
RCC Structures Design If A is the area of the foundation of a retaining wall carrying a load W and retaining earth of weight 'w' per unit volume, the minimum depth (h) of the foundation from the free surface of the earth, is h = √(W/Aw) [(1 - sin φ)/(1 + sin φ)]² h = (W/Aw) [(1 - sin φ)/(1 + sin φ)] h = (W/Aw) [(1 - sin φ)/(1 + sin φ)]² h = (W/Aw) [(1 + sin φ)/(1 + sin φ)] h = √(W/Aw) [(1 - sin φ)/(1 + sin φ)]² h = (W/Aw) [(1 - sin φ)/(1 + sin φ)] h = (W/Aw) [(1 - sin φ)/(1 + sin φ)]² h = (W/Aw) [(1 + sin φ)/(1 + sin φ)] ANSWER DOWNLOAD EXAMIANS APP
RCC Structures Design The advantage of a concrete pile over a timber pile, is No decay due to termites All of these No restriction on length Higher bearing capacity No decay due to termites All of these No restriction on length Higher bearing capacity ANSWER DOWNLOAD EXAMIANS APP