Area Problems
The lengths of three line segments (in cm) are given in each of the four cases. Which one of the following cases is not suitable to be the three sides of a triangle?
We know that in any triangle "the sum of two sides is always greater than its third side" and "the difference of two sides is always less than its third side".(i) 2 + 3 is not greater than 5 (ii) |5 - 2| not less than 3
let the side of the square be x meterslength of two sides = 2x metersdiagonal = 2 x = 1.414x m saving on 2x meters = .59x m saving % = 0 . 59 x 2 x * 100 % = 30% (approx)
Let Length = 5y meters and breadth = 3y meters.Then, perimeter = 2 x (5y + 3y ) m = 16y meters ...(i)But perimeter = Total Cost / Rate = 3000 / 7.50 m = 400 m ...(ii)from eqs. (i) and (ii)16y = 400? y = 25? Length - Breadth = (5 x 25 - 3 x 25 ) m = 2 x 25 m = 50 m
We have: (l - b) = 23 and 2(l + b) = 206 or (l + b) = 103. Solving the two equations, we get: l = 63 and b = 40. ∴ Area = (l x b) = (63 x 40) m2 = 2520 m2