Heat and Mass Transfer Reynolds number is the ratio of Kinematic viscosity to thermal diffusivity Energy transferred by convection to that by conduction None of these Inertia force to viscous force Kinematic viscosity to thermal diffusivity Energy transferred by convection to that by conduction None of these Inertia force to viscous force ANSWER DOWNLOAD EXAMIANS APP
Heat and Mass Transfer Fourier's law of heat conduction gives the heat flow for Irregular surfaces One dimensional cases only Nonuniform temperature surfaces Two dimensional cases only Irregular surfaces One dimensional cases only Nonuniform temperature surfaces Two dimensional cases only ANSWER DOWNLOAD EXAMIANS APP
Heat and Mass Transfer The heat transfer by conduction through a thick sphere is given by Q = 2πkr1 r2 (T1 - T2)/ (r2 - r1) Q = 8πkr1 r2 (T1 - T2)/ (r2 - r1) Q = 6πkr1 r2 (T1 - T2)/ (r2 - r1) Q = 4πkr1 r2 (T1 - T2)/ (r2 - r1) Q = 2πkr1 r2 (T1 - T2)/ (r2 - r1) Q = 8πkr1 r2 (T1 - T2)/ (r2 - r1) Q = 6πkr1 r2 (T1 - T2)/ (r2 - r1) Q = 4πkr1 r2 (T1 - T2)/ (r2 - r1) ANSWER DOWNLOAD EXAMIANS APP
Heat and Mass Transfer Cork is a good insulator because it has Atoms colliding frequency Porous body Free electrons Low density Atoms colliding frequency Porous body Free electrons Low density ANSWER DOWNLOAD EXAMIANS APP
Heat and Mass Transfer Heat transfer in liquid and gases takes place by Conduction Radiation Convection Conduction and convection Conduction Radiation Convection Conduction and convection ANSWER DOWNLOAD EXAMIANS APP
Heat and Mass Transfer Depending on the radiating properties, a body will be white when (Where a = absorptivity, p = reflectivity, x = transmissivity) P=1, T = 0 and a = 0 P = 0, x = 0 and a = 1 X = 0, a + p = 1 P = 0, x = 1 and a = 0 P=1, T = 0 and a = 0 P = 0, x = 0 and a = 1 X = 0, a + p = 1 P = 0, x = 1 and a = 0 ANSWER DOWNLOAD EXAMIANS APP