Theory of Structures parabolic arch of span and rise , is given by The equation of a y = h/l² × (1 – x ) y = 2h/l² × (1 – x) y = 4h/l² × (1 – x) y = 3h/l² × (1 – x) y = h/l² × (1 – x ) y = 2h/l² × (1 – x) y = 4h/l² × (1 – x) y = 3h/l² × (1 – x) ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures In plastic analysis, the shape factor for a circular section, is 1.2 1.5 1.3 1.7 1.2 1.5 1.3 1.7 ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A bar L metre long and having its area of cross-section A, is subjected to a gradually applied tensile load W. The strain energy stored in the bar is WL/AE WL/2AE W²L/2AE W²L/AE WL/AE WL/2AE W²L/2AE W²L/AE ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A spring of mean radius 40 mm contains 8 action coils of steel (N = 80000 N/mm²), 4 mm in diameter. The clearance between the coils being 1 mm when unloaded, the minimum compressive load to remove the clearance, is 35 N 30 N 25 N 40 N 35 N 30 N 25 N 40 N ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A lift of weight W is lifted by a rope with an acceleration f. If the area of cross-section of the rope is A, the stress in the rope is (1 – g/f)/A [W (1 + f/ G)]/ A [W (2 + g/f)]/A [W (2 + f/G)]/A (1 – g/f)/A [W (1 + f/ G)]/ A [W (2 + g/f)]/A [W (2 + f/G)]/A ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A masonry dam (density = 20,000 N/m³) 6 m high, one metre wide at the top and 4 m wide at the base, has vertical water face. The minimum stress at the base of the dam when the reservoir is full, will be 750 N/m² 7500 N/m² 75000 N/m² 75 N/m² 750 N/m² 7500 N/m² 75000 N/m² 75 N/m² ANSWER DOWNLOAD EXAMIANS APP