Theory of Structures parabolic arch of span and rise , is given by The equation of a y = h/l² × (1 – x ) y = 2h/l² × (1 – x) y = 4h/l² × (1 – x) y = 3h/l² × (1 – x) y = h/l² × (1 – x ) y = 2h/l² × (1 – x) y = 4h/l² × (1 – x) y = 3h/l² × (1 – x) ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures For determining the support reactions at A and B of a three hinged arch, points B and Care joined and produced to intersect the load line at D and a line parallel to the load line through A at D’. Distances AD, DD’ and AD’ when measured were 4 cm, 3 cm and 5 cm respectively. The angle between the reactions at A and B is 60° 45° 30° 90° 60° 45° 30° 90° ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures The equivalent length is of a column of length having both the ends fixed, is L/2 l L 2 L L/2 l L 2 L ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A cantilever of length 2 cm and depth 10 cm tapers in plan from a width 24 cm to zero at its free end. If the modulus of elasticity of the material is 0.2 × 106 N/mm², the deflection of the free end, is 3 mm 5 mm 4 mm 2 mm 3 mm 5 mm 4 mm 2 mm ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A simply supported rolled steel joist 8 m long carries a uniformly distributed load over it span so that the maximum bending stress is 75 N/mm². If the slope at the ends is 0.005 radian and the value of E = 0.2 × 106 N/mm², the depth of the joist, is 300 mm 200 mm 250 mm 400 mm 300 mm 200 mm 250 mm 400 mm ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures The stiffness of the close coil helical spring is d4N/8D3n d4N/4D3n 8D3N/d4n 4D3N/d4n d4N/8D3n d4N/4D3n 8D3N/d4n 4D3N/d4n ANSWER DOWNLOAD EXAMIANS APP