Theory of Structures If a solid shaft (diameter 20 cm, length 400 cm, N = 0.8 × 105 N/mm²) when subjected to a twisting moment, produces maximum shear stress of 50 N/mm 2, the angle of twist in radians, is 0.001 0.003 0.002 0.0025 0.001 0.003 0.002 0.0025 ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A compound truss may be formed by connecting two simple rigid frames, by Two bars three parallel bars Three bars Three bars intersecting at a point Two bars three parallel bars Three bars Three bars intersecting at a point ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A compound bar consists of two bars of equal length. Steel bar cross -section is 3500 mm²and that of brass bar is 3000 mm². These are subjected to a compressive load 100,000 N. If Eb = 0.2 MN/mm² and Eb = 0.1 MN/mm², the stresses developed are: b = 8 N/mm² s = 16 N/mm² b = 10 N/mm² s = 20 N/mm 2 b = 6 N/mm² s = 12 N/mm² b = 5 N/mm² s = 10 N/mm² b = 8 N/mm² s = 16 N/mm² b = 10 N/mm² s = 20 N/mm 2 b = 6 N/mm² s = 12 N/mm² b = 5 N/mm² s = 10 N/mm² ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures In a shaft, the shear stress is not directly proportional to Angle of twist Length of the shaft Modulus of rigidity Radius of the shaft Angle of twist Length of the shaft Modulus of rigidity Radius of the shaft ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures constant, depth of a cantilever of length of uniform strength loaded with Keeping breadth uniformly distributed load varies from zero at the free end and w l) at the fixed end 3w l at the fixed end 2w w l at the fixed end l) at the fixed end w l) at the fixed end 3w l at the fixed end 2w w l at the fixed end l) at the fixed end ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures At any point of a beam, the section modulus may be obtained by dividing the moment of inertia of the section by Maximum tensile stress at the section Depth of the neutral axis Depth of the section Maximum compressive stress at the section Maximum tensile stress at the section Depth of the neutral axis Depth of the section Maximum compressive stress at the section ANSWER DOWNLOAD EXAMIANS APP