Theory of Structures For beams breadth is constant, Depth d 3 Depth d 1/M Depth d M Depth d Depth d 3 Depth d 1/M Depth d M Depth d ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures Maximum principal stress theory for the failure of a material at elastic point, is known St. Venant's theory Von Mises' theory Guest's or Trecas' theory Rankine's theory St. Venant's theory Von Mises' theory Guest's or Trecas' theory Rankine's theory ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures At yield point of a test piece, the material Obeys Hooke’s law Regains its original shape on removal of the load Behaves in an elastic manner Undergoes plastic deformation Obeys Hooke’s law Regains its original shape on removal of the load Behaves in an elastic manner Undergoes plastic deformation ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A close coil helical spring of mean diameter D consists of n coils of diameter d. If it carries an axial load W, the energy stored in the spring, is 4W²D3n²/d4N 4WD²n/d4N 4W²D3n/d4N 4W²Dn/d4N 4W²D3n²/d4N 4WD²n/d4N 4W²D3n/d4N 4W²Dn/d4N ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures parabolic arch of span and rise , is given by The equation of a y = h/l² × (1 – x ) y = 2h/l² × (1 – x) y = 3h/l² × (1 – x) y = 4h/l² × (1 – x) y = h/l² × (1 – x ) y = 2h/l² × (1 – x) y = 3h/l² × (1 – x) y = 4h/l² × (1 – x) ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures constant, depth of a cantilever of length of uniform strength loaded with Keeping breadth uniformly distributed load varies from zero at the free end and l) at the fixed end 2w w l at the fixed end w l) at the fixed end 3w l at the fixed end l) at the fixed end 2w w l at the fixed end w l) at the fixed end 3w l at the fixed end ANSWER DOWNLOAD EXAMIANS APP