Let original length = x and original breadth = y. Decrease in area = xy - ❨ 80 x x 90 y ❩ 100 100 = ❨ xy - 18 xy ❩ 25 = 7 xy. 25 ∴ Decrease % = ❨ 7 xy x 1 x 100 ❩% = 28%
Let lateral side = (5y) cm and base = (4y) cm ? perimeter = 5y + 5y + 4y = 14 ?y = 1So, the sides are 5 cm , 5 cm and 4 cm Now s= 1/2 (5 + 5 + 4) cm = 7 cm (s-a) = 2 cm (s-b) = 2 cm and (s-c) = 3 cm? Required Area = ? (7 x 2 x 2 x 3) cm2=2?21 cm2
Area to be plastered = [2(l + b) x h] + (l x b) = {[2(25 + 12) x 6] + (25 x 12)} m2 = (444 + 300) m2 = 744 m2. ∴ Cost of plastering = Rs. ❨ 744 x 75 ❩ = Rs. 558
Let original length = x metres and original breadth = y metres. Original area = xy sq.m Increased length = 120 100 and Increased breadth = 120 100 New area = 120 100 x * 120 100 y = 36 25 x y m 2 The difference between the Original area and New area is: 36 25 x y - x y 11 25 x y Increase % = 11 25 x y x y * 100 = 44%