Given that, area = 40 sq cm, base = 28 cm and height = perpendicular = ?Area = (base x perpendicular) / 2 ? 40 = (28 x perpendicular) / 2 ? perpendicular = 40/14 = 20/7 = 26/7 cm
Let original length = x metres and original breadth = y metres. Original area = (xy) m2. New length = ❨ 120 x ❩m = ❨ 6 x ❩m. 100 5 New breadth = ❨ 120 y ❩m = ❨ 6 y ❩m. 100 5 New Area = ❨ 6 x x 6 y ❩m2 = ❨ 36 xy ❩m2. 5 5 25 The difference between the original area = xy and new-area 36/25 xy is = (36/25)xy - xy = xy(36/25 - 1) = xy(11/25) or (11/25)xy ∴ Increase % = ❨ 11 xy x 1 x 100 ❩% = 44%
Let the sides of trapezium be 5k and 3k, respectively According to the question, (1/2) x [(5k + 3k) x 12] = 384? 8k = (384 x 2)/12 = 64 ? k = 64/8 = 8 cmLength of smaller of the parallel sides = 8 x 3 = 24 cm
Let the side of the square be 's' cm length of rectangle = (s+5) cm breadth of rectangle = (s-3)cm (s+5) (s-3) = s 2 - 5s - 3s - 15 = s 2 2s = 15 Perimeter of rectangle = 2(L+B) = 2(s+5 + s?3) = 2(2s + 2) = 2(15 + 2) = 34 cm
let ABCD be the given parallelogram area of parallelogram ABCD = 2 x (area of triangle ABC) now a = 30m, b = 14m and c = 40m s=1/2 x (30+14+40) = 42 Area of triangle ABC = s s - a s - b s - c = 42 12 28 2 = 168sq m area of parallelogram ABCD = 2 x 168 = 336 sq m