Theory of Structures A steel rod 1 metre long having square cross section is pulled under a tensile load of 8 tonnes. The extension in the rod was 1 mm only. If Esteel = 2 × 106 kg/cm², the side of the rod, is 2.5 cm 1 cm 2 cm 1.5 cm 2.5 cm 1 cm 2 cm 1.5 cm ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures Slenderness ratio of a long column, is Radius of gyration divided by area of cross-section Length of column divided by least radius of gyration Area of cross-section divided by least radius of gyration Area of cross-section divided by radius of gyration Radius of gyration divided by area of cross-section Length of column divided by least radius of gyration Area of cross-section divided by least radius of gyration Area of cross-section divided by radius of gyration ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures If E, N, K and 1/m are modulus of elasticity, modulus of rigidity. Bulk modulus and Poisson ratio of the material, the following relationship holds good E = 3K (1 – 2/m) (3/2)K (1 – 2/m) = N (1 + 1/m) E = 2N (1 + 1/m) All of these E = 3K (1 – 2/m) (3/2)K (1 – 2/m) = N (1 + 1/m) E = 2N (1 + 1/m) All of these ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A simply supported beam A carries a point load at its mid span. Another identical beam B carries the same load but uniformly distributed over the entire span. The ratio of the maximum deflections of the beams A and B, will be 5/8 8/5 3/2 2/3 5/8 8/5 3/2 2/3 ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures The stiffness of the close coil helical spring is d4N/4D3n 8D3N/d4n 4D3N/d4n d4N/8D3n d4N/4D3n 8D3N/d4n 4D3N/d4n d4N/8D3n ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures The greatest load which a spring can carry without getting permanently distorted, is called Stiffness Proof load Proof stress Proof resilience Stiffness Proof load Proof stress Proof resilience ANSWER DOWNLOAD EXAMIANS APP