Alligation or Mixture problems
A milkman claims to sell milk at its cost price, still, he is making a profit of 30% since he has mixed some amount of water in the milk. What is the % of milk in the mixture?
Let the milk he bought is 1000 ml Let C.P of 1000 ml is Rs. 100 Here let he is mixing K ml of water He is getting 30% profit => Now, the selling price is also Rs. 100 for 1000 ml => 100 : K% = 100 : 30 10 : 3 is ratio of milk to water => Percentage of milk = 10 x 100/13 = 1000/13 = 76.92%
Ratio of milk and water = 2 : 1Quantity of milk = 60 X 2/3 = 40 litreQuantity of water = 20 litreTo make ratio, 1: 2, we have to double the water that of milkSo, water should be 80 litre.That means 80 ? 20 = 60 litre water to be added.
If the two alloys are mixed, the mixture would contain 15 gms of each metal and it would cost Rs. (150 + 120) = Rs. 270.
Cost of (15 gms of metal A + 15 gms of metal B) = Rs. 270
Cost of (1 gm of metal A + 1 gm of metal B) = Rs. (270 / 15) = Rs. 18
Cost of 1 gm of metal B = Rs. (18 ? 6) = Rs. 12
Average cost of original piece of alloy = (150 / 15) = Rs. 10 per gm.
Quantity of metal / A Quantity of metal B = (2 / 4) = (1 / 2)
Quantity of metal B = 2 (1 + 2) × 15 = 10 gms.
Ratio of Milk and water in a vessel A is 4 : 1 Ratio of Milk and water in a vessel B is 3 : 2 Ratio of only milk in vessel A = 4 : 5 Ratio of only milk in vessel B = 3 : 5 Let 'x' be the quantity of milk in vessel C Now as equal quantities are taken out from both vessels A & B => 4/5 : 3/5 x 3/5-x x - 4/5 => 3 5 - x x - 4 5 = 1 1 (equal quantities) => x = 7/10 Therefore, quantity of milk in vessel C = 7 => Water quantity = 10 - 7 = 3 Hence the ratio of milk & water in vessel 3 is 7 : 3
Here, quantity of wine left after third operation = [1 - (5 / 25)]3 x 25 = (4 / 5)3 x 25 = (64 / 125) x 25 = (64 / 5) = 12 4/5 liters. Final ratio of wine to water = (64 / 125) / (1- 64 /125) = (64 / 125) /(61 / 125) Wine : Water = (64 / 61)