Alligation or Mixture problems
A can contains a mixture of 2 liquids A and B in proportion 7 : 5 when 9 liters of mixture are drawn off and the can is filled with B, the proportion of A and B becomes 7 : 9. How many liters of liquid A was contained by the can initially?
If the two alloys are mixed, the mixture would contain 15 gms of each metal and it would cost Rs. (150 + 120) = Rs. 270.
Cost of (15 gms of metal A + 15 gms of metal B) = Rs. 270
Cost of (1 gm of metal A + 1 gm of metal B) = Rs. (270 / 15) = Rs. 18
Cost of 1 gm of metal B = Rs. (18 ? 6) = Rs. 12
Average cost of original piece of alloy = (150 / 15) = Rs. 10 per gm.
Quantity of metal / A Quantity of metal B = (2 / 4) = (1 / 2)
Quantity of metal B = 2 (1 + 2) × 15 = 10 gms.
By the rule of alligation, we have: Profit on 1st part Profit on 2nd part 8% Mean Profit 14% 18% 4 6 Ration of 1st and 2nd parts = 4 : 6 = 2 : 3 ∴ Quantity of 2nd kind = ❨ 3 x 1000 ❩kg = 600 kg.
Let C.P. of 1 liter milk be Re. 1, Gain = 16 2/3 % = 50/3 %and S.P. of 1 liter mixture = Re. 1 then C.P. of 1 liter mixture = (1 x (100 x 3) / 350) = Re. (6 / 7) By the rule of alligation,Hence, required ratio = (1/ 7) : (6 / 7) = 1 : 6
Wine Water 8L 32L 1 : 4 20 % 80% (original ratio) 30 % 70% (required ratio) In ths case, the percentage of water being reduced when the mixture is being replaced with wine. so the ratio of left quantity to the initial quantity is 7:8 Therefore , 7 8 = 1 - K 40 => K = 5 Lit
Suppose the vessel initially contains 8 litres of liquid. Let x litres of this liquid be replaced with water. Quantity of water in new mixture = ❨ 3 - 3x + x ❩ litres 8 Quantity of syrup in new mixture = ❨ 5 - 5x ❩ litres 8 ∴ ❨ 3 - 3x + x ❩ = ❨ 5 - 5x ❩ 8 8 ⟹ 5x + 24 = 40 - 5x ⟹ 10x = 16 ⟹ x = 8 . 5 So, part of the mixture replaced = ❨ 8 x 1 ❩ = 1 . 5