Alligation or Mixture problems
8 litres are drawn from a cask full of wine and is then filled with water. This operation is performed three more times. The ratio of the quantity of wine now left in cask to that of water is 16 : 65. How much wine did the cask hold originally?
Let the quantity of the wine in the cask originally be x litres. Then, quantity of wine left in cask after 4 operations = [ x ❨ 1 - 8 ❩ 4 ] litres. x ∴ ❨ x(1 - (8/x))4 ❩ = 16 x 81 ⟹ ❨ 1 - 8 ❩ 4 = ❨ 2 ❩ 4 x 3 ⟹ ❨ x - 8 ❩ = 2 x 3 ⟹ 3x - 24 = 2x ⟹ x = 24.
Ratio of milk and water = 2 : 1Quantity of milk = 60 X 2/3 = 40 litreQuantity of water = 20 litreTo make ratio, 1: 2, we have to double the water that of milkSo, water should be 80 litre.That means 80 ? 20 = 60 litre water to be added.
The given solution has 75% milk.
Milk to be added has 100% milk.
Milk should be added to the given mixture in the ratio 15 : 10 or 3 : 2
Quantity of milk to be added = (3 / 2) × 6 = 9 liters.
Here, quantity of wine left after third operation = [1 - (5 / 25)]3 x 25 = (4 / 5)3 x 25 = (64 / 125) x 25 = (64 / 5) = 12 4/5 liters. Final ratio of wine to water = (64 / 125) / (1- 64 /125) = (64 / 125) /(61 / 125) Wine : Water = (64 / 61)
Let the amount of juice and water in original mixture '4x' litre and '3x' litre respectively. According to given data, 4x/3x+6 =8/7 28x=24x+48 28x?24x=48 4x = 48 x = 12 Amount of juice = 4x = 4×12 = 48 litre.