Engineering Mechanics The angular velocity (in rad/s) of a body rotating at N revolutions per minute is 2πN/60 πN/60 2πN/180 πN/180 2πN/60 πN/60 2πN/180 πN/180 ANSWER DOWNLOAD EXAMIANS APP
Engineering Mechanics If a number of coplanar forces acting at a point be in equilibrium, the sum of clockwise moments must be __________ the sum of anticlockwise moments, about any point. Equal to None of these Greater than Less than Equal to None of these Greater than Less than ANSWER DOWNLOAD EXAMIANS APP
Engineering Mechanics The horizontal range of a projectile (R) is given by R = u² cosα/g R = u² sinα/g R = u² sin2α/g R = u² cos2α/g R = u² cosα/g R = u² sinα/g R = u² sin2α/g R = u² cos2α/g ANSWER DOWNLOAD EXAMIANS APP
Engineering Mechanics The mechanical advantage of a lifting machine is the ratio of Load lifted to the effort applied Distance moved by effort to the distance moved by load Output to the input All of these Load lifted to the effort applied Distance moved by effort to the distance moved by load Output to the input All of these ANSWER DOWNLOAD EXAMIANS APP
Engineering Mechanics Non-coplanar concurrent forces are those forces which Meet at one point and their lines of action also lie on the same plane Do not meet at one point, but their lines of action lie on the same plane Do not meet at one point and their lines of action do not lie on the same plane Meet at one point, but their lines of action do not lie on the same plane Meet at one point and their lines of action also lie on the same plane Do not meet at one point, but their lines of action lie on the same plane Do not meet at one point and their lines of action do not lie on the same plane Meet at one point, but their lines of action do not lie on the same plane ANSWER DOWNLOAD EXAMIANS APP
Engineering Mechanics The Cartesian equation of trajectory is (where u = Velocity of projection, α = Angle of projection, and x, y = Co-ordinates of any point on the trajectory after t seconds.) y = x. tanα + (gx²/2u² cos²α) y = (gx²/2u² cos²α) - x. tanα y = x. tanα - (gx²/2u² cos²α) y = (gx²/2u² cos²α) + x. tanα y = x. tanα + (gx²/2u² cos²α) y = (gx²/2u² cos²α) - x. tanα y = x. tanα - (gx²/2u² cos²α) y = (gx²/2u² cos²α) + x. tanα ANSWER DOWNLOAD EXAMIANS APP