Theory of Structures H V are the algebraic sums of the forces resolved horizontally and vertically respectively, M is the algebraic sum of the moments of forces about any point, for the equilibrium of the body acted upon All of these H = 0 V = 0 M = 0 All of these H = 0 V = 0 M = 0 ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A close coil helical spring of mean diameter D consists of n coils of diameter d. If it carries an axial load W, the energy stored in the spring, is 4W²D3n²/d4N 4WD²n/d4N 4W²Dn/d4N 4W²D3n/d4N 4W²D3n²/d4N 4WD²n/d4N 4W²Dn/d4N 4W²D3n/d4N ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A short column (30 cm × 20 cm) carries a load P 1 at 4 cm on one side and another load P2at 8 cm on the other side along a principal section parallel to longer dimension. If the extreme intensity on either side is same, the ratio of P1 to P2 will be 8/5 3/2 2/3 5/8 8/5 3/2 2/3 5/8 ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A lift of weight W is lifted by a rope with an acceleration f. If the area of cross-section of the rope is A, the stress in the rope is [W (2 + g/f)]/A (1 – g/f)/A [W (1 + f/ G)]/ A [W (2 + f/G)]/A [W (2 + g/f)]/A (1 – g/f)/A [W (1 + f/ G)]/ A [W (2 + f/G)]/A ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures The maximum bending moment for a simply supported beam with a uniformly distributed load w/unit length, is WI²/8 WI/2 WI²/12 WI²/4 WI²/8 WI/2 WI²/12 WI²/4 ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A rolled steel joist is simply supported at its ends and carries a uniformly distributed load which causes a maximum deflection of 10 mm and slope at the ends of 0.002 radian. The length of the joist will be, 14 M 16 m 13 M 15 M 14 M 16 m 13 M 15 M ANSWER DOWNLOAD EXAMIANS APP