Theory of Structures For a strongest rectangular beam cut from a circular log, the ratio of the width and depth, is 0.303 0.404 0.505 0.707 0.303 0.404 0.505 0.707 ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures In case of a simply supported I-section beam of span L and loaded with a central load W, the length of elasto-plastic zone of the plastic hinge, is L/4 L/3 L/5 L/2 L/4 L/3 L/5 L/2 ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures The maximum deflection due to a load W at the free end of a cantilever of length L and having flexural rigidity EI, is WL3/2EI WL3/3EI WL²/3EI WL²/2EI WL3/2EI WL3/3EI WL²/3EI WL²/2EI ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures If E, N, K and 1/m are modulus of elasticity, modulus of rigidity. Bulk modulus and Poisson ratio of the material, the following relationship holds good (3/2)K (1 – 2/m) = N (1 + 1/m) All of these E = 3K (1 – 2/m) E = 2N (1 + 1/m) (3/2)K (1 – 2/m) = N (1 + 1/m) All of these E = 3K (1 – 2/m) E = 2N (1 + 1/m) ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A masonry dam (density = 20,000 N/m³) 6 m high, one metre wide at the top and 4 m wide at the base, has vertical water face. The minimum stress at the base of the dam when the reservoir is full, will be 75000 N/m² 75 N/m² 7500 N/m² 750 N/m² 75000 N/m² 75 N/m² 7500 N/m² 750 N/m² ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A lift of weight W is lifted by a rope with an acceleration f. If the area of cross-section of the rope is A, the stress in the rope is [W (1 + f/ G)]/ A [W (2 + g/f)]/A (1 – g/f)/A [W (2 + f/G)]/A [W (1 + f/ G)]/ A [W (2 + g/f)]/A (1 – g/f)/A [W (2 + f/G)]/A ANSWER DOWNLOAD EXAMIANS APP