Theory of Structures constant, depth of a cantilever of length of uniform strength loaded with Keeping breadth uniformly distributed load varies from zero at the free end and w l) at the fixed end 3w l at the fixed end 2w w l at the fixed end l) at the fixed end w l) at the fixed end 3w l at the fixed end 2w w l at the fixed end l) at the fixed end ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A shaft is subjected to bending moment M and a torque T simultaneously. The ratio of the maximum bending stress to maximum shear stress developed in the shaft, is M/T T/M 2T/M 2M/ T M/T T/M 2T/M 2M/ T ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures A two hinged parabolic arch of span l and rise h carries a load varying from zero at the left end to ? per unit run at the right end. The horizontal thrust is ωl²/16h ωl²/4h ωl²/12h ωl²/8h ωl²/16h ωl²/4h ωl²/12h ωl²/8h ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures Flat spiral springs Are wound by applying a torque Consist of uniform thin strips All of these Consist of uniform thin strips Are wound by applying a torque Consist of uniform thin strips All of these Consist of uniform thin strips ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures The ratio of the length and diameter of a simply supported uniform circular beam which experiences maximum bending stress equal to tensile stress due to same load at its mid span, is 1/2 1/4 1/8 1/3 1/2 1/4 1/8 1/3 ANSWER DOWNLOAD EXAMIANS APP
Theory of Structures The horizontal deflection of a parabolic curved beam of span 10 m and rise 3 m when loaded with a uniformly distributed load l t per horizontal length is (where Ic is the M.I. at the crown, which varies as the slope of the arch). 200/EIc 150/EIc 100/EIc 50/EIc 200/EIc 150/EIc 100/EIc 50/EIc ANSWER DOWNLOAD EXAMIANS APP