Engineering Mechanics According to the law of moments, if a number of coplanar forces acting on a particle are in equilibrium, then Their algebraic sum is zero The algebraic sum of their moments about any point in their plane is zero The algebraic sum of their moments about any point is equal to the moment of their resultant force about the same point Their lines of action are at equal distances Their algebraic sum is zero The algebraic sum of their moments about any point in their plane is zero The algebraic sum of their moments about any point is equal to the moment of their resultant force about the same point Their lines of action are at equal distances ANSWER DOWNLOAD EXAMIANS APP
Engineering Mechanics The loss of kinetic energy during inelastic impact, is given by (where m1 = Mass of the first body,m2 = Mass of the second body, and u1 and u2 = Velocities of the first and second bodies respectively.) [m₁ m₂/2(m₁ + m₂)] (u₁ - u₂)² [m₁ m₂/2(m₁ + m₂)] (u₁² - u₂²) [2(m₁ + m₂)/m₁ m₂] (u₁ - u₂)² [2(m₁ + m₂)/m₁ m₂] (u₁² - u₂²) [m₁ m₂/2(m₁ + m₂)] (u₁ - u₂)² [m₁ m₂/2(m₁ + m₂)] (u₁² - u₂²) [2(m₁ + m₂)/m₁ m₂] (u₁ - u₂)² [2(m₁ + m₂)/m₁ m₂] (u₁² - u₂²) ANSWER DOWNLOAD EXAMIANS APP
Engineering Mechanics In a single threaded worm and worm wheel, the number of teeth on the worm is 50. The diameter of the effort wheel is 100 mm and that of load drum is 50 mm. The velocity ratio is 50 100 400 200 50 100 400 200 ANSWER DOWNLOAD EXAMIANS APP
Engineering Mechanics The algebraic sum of moments of the forces forming couple about any point in their plane is Both of above are correct Equal to the moment of the couple Constant Both of above are wrong Both of above are correct Equal to the moment of the couple Constant Both of above are wrong ANSWER DOWNLOAD EXAMIANS APP
Engineering Mechanics The time of flight (t) of a projectile on a horizontal plane is given by t = 2u. tanα/g t = 2u. cosα/g t = 2u. sinα/g t = 2u/g.sinα t = 2u. tanα/g t = 2u. cosα/g t = 2u. sinα/g t = 2u/g.sinα ANSWER DOWNLOAD EXAMIANS APP
Engineering Mechanics The frequency of oscillation of a compound pendulum is (where kG = Radius of gyration about the centroidal axis, and h = Distance between the point of suspension and C.G. of the body.) 1/2π. √(gh/kG² + h²) 2π. √(gh/kG² + h²) 2π. √(kG² + h²/gh) 1/2π. √(kG² + h²/gh) 1/2π. √(gh/kG² + h²) 2π. √(gh/kG² + h²) 2π. √(kG² + h²/gh) 1/2π. √(kG² + h²/gh) ANSWER DOWNLOAD EXAMIANS APP