Alligation or Mixture problems
A vessel is filled with liquid, 3 parts of which are water and 5 parts syrup. How much of the mixture must be drawn off and replaced with water so that the mixture may be half water and half syrup?
Suppose the vessel initially contains 8 litres of liquid. Let x litres of this liquid be replaced with water. Quantity of water in new mixture = ❨ 3 - 3x + x ❩ litres 8 Quantity of syrup in new mixture = ❨ 5 - 5x ❩ litres 8 ∴ ❨ 3 - 3x + x ❩ = ❨ 5 - 5x ❩ 8 8 ⟹ 5x + 24 = 40 - 5x ⟹ 10x = 16 ⟹ x = 8 . 5 So, part of the mixture replaced = ❨ 8 x 1 ❩ = 1 . 5
W i n e ( l e f t ) W a t e r ( a d d e d ) = 343 169 It means W i n e ( l e f t ) W i n e ( i n i t i a l a m o u n t ) = 343 512 ? 343 + 169 = 512 Thus , 343 x = 512 x 1 - 15 K 3 ? 343 512 = 7 8 3 = 1 - 15 k 3 => K = 120 Thus the initial amount of wine was 120 liters.
Given mixture = 48 lit Milk in it = 48 x 5/8 = 30 lit => Water in it = 48 - 30 = 18 lit Let 'L' lit of water is added to make the ratio as 3:5 => 30/(18+L) = 3/5 => 150 = 54 + 3L => L = 32 lit.
Ratio of milk and water = 2 : 1Quantity of milk = 60 X 2/3 = 40 litreQuantity of water = 20 litreTo make ratio, 1: 2, we have to double the water that of milkSo, water should be 80 litre.That means 80 ? 20 = 60 litre water to be added.