Alligation or Mixture problems
3 glasses of capacity 2 liters, 5 liters and 9 liters contain mixture of milk and water with milk concentrations 90 %, 80 % and 70 % respectively. The contents of 3 glasses are emptied into a large vessel. Find the milk concentration and ratio of milk to water in the resultant mixture ?
Let initially milk and water in container B is 3x liter and x liter respectively
Now, 3x + (8/9) × 18 ? x ? (1/9) × 18 = 30
3x + 16 ? x ? 2 = 30
x = 8
Initial quantity is container B = 8 (3 + 1) = 32 Liter.
By the rule of alligation, we have: Strength of first jar Strength of 2nd jar 40% MeanStrength 26% 19% 7 14 So, ratio of 1st and 2nd quantities = 7 : 14 = 1 : 2 ∴ Required quantity replaced = 2 3
By the rule of alligation, we have: Profit on 1st part Profit on 2nd part 8% Mean Profit 14% 18% 4 6 Ration of 1st and 2nd parts = 4 : 6 = 2 : 3 ∴ Quantity of 2nd kind = ❨ 3 x 1000 ❩kg = 600 kg.