Fractions and Decimals (0.2 * 0.2 + 0.01) ( 0.1 * 0.1 + 0.02)^(-1) is equal to : 4/3 7/3 6/3 5/3 4/3 7/3 6/3 5/3 ANSWER EXPLANATION DOWNLOAD EXAMIANS APP Given = (0.2 * 0.2 + 0.01) / ( 0.1 * 0.1 + 0.02)= (0.04 + 0.01) / (0.01 + 0.02) = 0.05 / 0.03= 5/3...
Fractions and Decimals ( .009 / ?) = .01 0.09 9 0.9 0.009 0.09 9 0.9 0.009 ANSWER EXPLANATION DOWNLOAD EXAMIANS APP Let .009 / x = .01; Then x = .009 / .01=.9 / 1= .9
Fractions and Decimals Evaluate : [(2.39)² - (1.61)²] / [2.39 - 1.61] 4 6 2 3 4 6 2 3 ANSWER EXPLANATION DOWNLOAD EXAMIANS APP Given Expression=(a² - b²) / (a - b)=[(a + b)(a - b)] / (a - b)= (a + b)= (2.39 + 1.61)= 4
Fractions and Decimals If 1.5x = 0.04y, then the value of ( (y - x) / (y+x) ) is : 65/67 71/74 73/77 61/63 65/67 71/74 73/77 61/63 ANSWER EXPLANATION DOWNLOAD EXAMIANS APP x / y = 0.04 / 1.5 = 4 / 150 = 2 / 75.= > ( (y - x) / (y+x) ) = (1 - (x / y)) / ( 1 + ( x / y)) = (1 - 2/75) / (1 + 2/75) = 73/77.
Fractions and Decimals 3 / [ 3+ {(0.3 - 3.03) / (3 x 0.91)}] = ? 1.0 1.5 0.5 2.0 1.0 1.5 0.5 2.0 ANSWER EXPLANATION DOWNLOAD EXAMIANS APP Given expression = 3 / [ 3+ {(0.3 - 3.03) / (3 x 0.91)}] = 3 / [3- { 273 / (3 x 91)}] = 3 / (3-1)= 3 / 2 = 1.5
Fractions and Decimals Arrange the fractions in ascending order: 3/4, 5/8, 7/12, 13/16 7/12 < 5/8 < 3/4 < 13/16 5/8 < 7/12 < 13/16 < 3/ 5/8 < 7/12 < 3/4 < 13/16 5/8 < 3/4 < 13/16 < 7/12 7/12 < 5/8 < 3/4 < 13/16 5/8 < 7/12 < 13/16 < 3/ 5/8 < 7/12 < 3/4 < 13/16 5/8 < 3/4 < 13/16 < 7/12 ANSWER EXPLANATION DOWNLOAD EXAMIANS APP 5/8 = .625,7/12 = .5833, 3/4 = .75,13/16 = .8125So order will be 7/12 < 5/8 < 3/4 < 13/16